Fabrication of waveguide spatial light modulators via femtosecond laser micromachining
نویسندگان
چکیده
We have previously introduced an anisotropic leaky-mode modulator as a waveguide-based, acousto-optic solution for spatial light modulation in holographic video display systems. Waveguide fabrication for these and similar surface acoustic wave devices relies on proton exchange of a lithium niobate substrate, which involves the immersion of the substrate in an acid melt. While simple and effective, waveguide depth and index profiles resulting from proton exchange are often non-uniform over the device length or inconsistent between waveguides fabricated at different times using the same melt and annealing parameters. In contrast to proton exchange, direct writing of waveguides has the appeal of simplifying fabrication (as these methods are inherently maskless) and the potential of fine and consistent control over waveguide depth and index profiles. In this paper, we explore femtosecond laser micromachining as an alternative to proton exchange in the fabrication of waveguides for anisotropic leaky-mode modulators.
منابع مشابه
Ultrafast laser written active devices
Direct-write optical waveguide device fabrication is probably the most widely studied application of femtosecond laser micromachining in transparent dielectrics at the present time. Devices such as buried waveguides, power splitters, couplers, gratings, optical amplifiers and laser oscillators have all been demonstrated. This paper reviews the application of the femtosecond laser direct-write t...
متن کاملFabrication of Micro/Nano Structures on Metals by Femtosecond Laser Micromachining
Femtosecond laser micromachining has emerged in recent years as a new technique for micro/nano structure fabrication because of its applicability to virtually all kinds of materials in an easy one-step process that is scalable. In the past, much research on femtosecond laser micromachining was carried out to understand the complex ablation mechanism, whereas recent works are mostly concerned wi...
متن کاملRemote and rapid micromachining of broadband low-reflectivity black silicon surfaces by femtosecond laser filaments.
We report an approach for remote and rapid fabrication of a broadband low-reflectivity black silicon surface by ablating crystalline silicon with femtosecond laser filaments in air. Porous microstructures on the processed silicon surface are formed, resulting in a significantly enhanced light trapping efficiency in a broadband (UV-IR) spectral range. It is found that the air filament can signif...
متن کاملFabrication of an integrated high-quality-factor (high-Q) optofluidic sensor by femtosecond laser micromachining.
We report on fabrication of a microtoroid resonator of a high-quality factor (i.e., Q-factor of ~3.24 × 10(6) measured under the critical coupling condition) integrated in a microfluidic channel using femtosecond laser three-dimensional (3D) micromachining. Coupling of light into and out of the microresonator has been realized with a fiber taper that is reliably assembled with the microtoroid. ...
متن کاملFabrication of High-Q Microresonators by Femtosecond Laser Micromachining of Optical Fiber
We report a technique to fabricate whispering gallery mode microdisk resonators using femtosecond laser micromachining and a heat reflow process to improve the optical quality of the resonator. The fabricated resonators had suppressed higher order modes with a measured Q-factor as high as 7.2× 10. The described fabrication process, which relies on material non-thermal laser ablation, offers the...
متن کامل